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Semiclassical Model of Quark–Gluon Plasma
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A semiclassical model of a gluon–quark plasma (QGP) is provided. The spin
of the quark is described by an antisymmetric tensor Smn and color charges,
and spin tensor are defined as semiclassical numbers. The transport properties
of QGP in color space and spin space are investigated. The consistency of the
semiclassical model and the quantum models of QGP is discussed.

1. INTRODUCTION

It is predicted by lattice gauge theory [1, 2] and finite-temperature
field theory [3] that the deconfinement phase transition of the hadron can
occur at high temperature and density and a quark–gluon plasma (QGP)
can be produced. The critical temperature of the deconfinement phase
transition is about 200 Mev [4, 5], which is so high that the QGP is
expected to be found in relativistic heavy-ion collisions. After production
in a relativistic heavy-ion collision, the QGP will go toward to equilibrium.
The transport process of the QGP is a very important physical process
and has been studied by many physicists [e.g., 6, 7] using classical and
quantum models of QGP. Generally, the classical model is consistent with
the quantum model. Heinz and coworkers have discussed consistency
when the spin of the quark is not considered. In this paper, we discuss
consistency when the spin of the quark is retained. In order to realize our
aim, a semiclassical model of QGP is presented in Section 2. In Section
3 we expand the semiclassical limit equations of the quantum model of
QGP in color and spin spaces. In Section 4, we discuss the consistency
of the two models.
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2. SEMICLASSICAL MODEL OF QUARK–GLUON PLASMA

As a gluon is a non-Abelian particle, the non-Abelian property is
important in the QGP and makes the color Qa noncommutative. So we assume
the color charges do not commute with each other in the semiclassical model
of QGP. This differs from the classical model where the color charges are
commutative. Except for the noncommutation of the color charges, we still
define the color charges as satisfying the Lee algebra of SU(3) in color space.

In the QGP, when the spin of the quark is considered, there is an
interaction of the quark spin and the gluon field, which is given by

*I 5
g
2

(DnSabFab)aQa (1)

The interaction makes the properties of the QGP in color and spin spaces
very complex. In the semiclassical model of the QGP, we use Smn (antisymmet-
ric tensor) to describe the spin of the quark and also assume that the compo-
nents of the Smn are not commutative. In ref. 8, the motion equation of Smn

is given by

m
dSmn

dt
5 gQa[Fm

alSln 2 F n
alSlm] (2)

In the semiclassical model of the QGP, a quark is described by one-
particle distribution function, which is a function of dynamic variables, f 5
f (x, p, Q, S), and denotes the probability density of finding a quark at given
time-space point (x, p, Q, S) in phase space. In ref. 9, ṗm Q̇a are given by

mṗn 5 m
­pm

­t
5 2gQapmF a

mn 1
g
2

(DnSabFab)aQa (3)

mQ̇a 5 m
­pm

­t
5 2qgabc1pmAb

m 1
1
2

SabF b
ab2Qc (4)

The evolution of the one-particle distribution function with proper time is
given by

pm­m f (x, p, Q, S) 5 [gQapmF a
mn 2

g
2

(DnSabFab)aQa] ­n
p f (x, p, Q, S)

1 Fgfabc1pmAb
m 1

1
2

SabF b
ab2QcG ­a

Q f (x, p, Q, S)

2 [gQa(F a
mlSl

n 2 F a
nlSl

m)] ­mn
S f (x, p, Q, S)

1 C(x, p, Q, S) (5)
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where C(x, p, Q, S)is a collision term describing short-range two-body colli-
sions. Here ­n

p 5 ­/­pn, ­a
Q 5 ­/­Qa, and ­mn

S 5 ­/­Smn. Equation (5) is called
the classical transport equation of the quark.

Because f(x, p, Q, S) is related to Qa and the color charges are noncommu-
tative with each other, we assume that the distribution function does not
commute with color charges, so that the product of f and Qa is related to
order of f and Qa. For same reason, the product of f and Smn also is related
to the order of f and Smn. In Eq. (5), we write Qa and Smn on the left of f and
call it the left product form of the classical transport equation. The transport
equation still can been written in the right product form, or Qa and Smn placed
on the right side of f,

pm­m f (x, p, Q, S) 5 ­n
p f (x, p, Q, S)FgQapmF a

mn 2
g
2

(DnSabFab)aQaG
1 ­a

Q f (x, p, Q, S)Fgfabc1pmAb
m 1

1
2

SabF b
ab2QcG

2 ­mn
S f (x, p, Q, S)[gQa(F a

mlSl
n 2 F a

nlSl
m)]

1 C(x, p, Q, S) (6)

We can write the transport equation in a symmetric form,

pm ­m f 5
g
2

pmF a
mn{Qa, ­n

p f } 2
g
4

(DnFab)a{SabQa, ­n
p f }

1
g
2

fabc pmAb
m{Qc, ­a

Q f } 1
g
4

fabc F b
ab{SabQc , ­a

Q f }

2
g
2

{Qa(F a
mlSl

n 2 F a
nlSl

m), ­mn
S f } 1 C(x, p, Q, S) (7)

In color space, we can define the color moments by the distribution
function

fn(x, p, S) 5 # bf (x, p, Q, S) dQ (8)

In the above equation, the integral in color space needs to be defined. Consid-
ering that the color charge Qa should be orthonormal in color space, we
define the orthonormal relations

# Qa dQ 5 0, # Qa Qb dQ 5 dab (9)

The distribution function is expanded in color space as
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f 5 f0 I 1 faQa (10)

In the classical model, the expansion above is not complete and QaQb, QaQbQc,
. . . need to be considered. Here we do not need to consider them because
these terms can be expanded in the form of Eq. (10). For example,

QaQb 5
1
6

dab 2
1
2

(dabc 1 ifabc)Qc (11)

Using Eq. (9), have f0 5 * f dQ, fa 5 *Qa f dQ, 5 * fQa dQ. Here f0 and fa

are called the color singlet and color octet distribution functions, respectively.
Using Eq. (11), we find the relations

# QaQbf dQ 5 # QbfQa dQ 5 # fQaQb dQ 5
f0

6
dab 2

1
2

(dabc 1 ifabc) fc

(12)

Using the transport equations, we can construct the color moment equa-
tions. Using Eq. (5), we obtain the left product form of the color moment
equations,

pm ­m f0 (x, p, S) 5 FgpmF a
mn 2

g
2

(DnSabFab)aG­n
p fa(x, p, S)

2 [g(F a
mlSl

n 2 F a
nlSl

m)]­mn
S fa(x, p, S) 1 C(x, p, S) (13)

pm ­m fa(x, p, S) 5 FgpmF b
mn 2

g
2

(DnSabFab)bG­n
p fab(x, p, S)

2 Fgfabc1pmAb
m 1

1
2

SabF b
ab2 ­fc(x, p, S)

2 [g(F b
mlSl

n 2 F b
nlSl

m)] ­mn
S fab(x, p, S)

1 Ca(x, p, S) (14)

Using Eq. (6), we obtain the right form of the color moment equations

pm ­m f0(x, p, S) 5 ­n
p fa(x, p, S)FgpmF a

mn 2
g
2

(DnSabFab)aG
2 fa(x, p, S)[g(F a

mlSl
n 2 F a

nlSl
m)] ­mn

S 1 C(x, p, S) (15)

pm ­m fa(x, p, S) 5 ­n
p fab(x, p, S)FgpmF b

mn 2
g
2

(DnSabFab)bG
FIRST PAGE PROOFS



Semiclassical Model of Quark–Gluon Plasma 1321

2 ­fc(x, p, S)Fgfabc1pmAb
m 1

1
2

SabF b
ab2G

2 ­mn
S fab(x, p, S)[g(F b

mlSl
n 2 F b

mlSl
m)]

1 Ca(x, p, S) (16)

These color moment equations reflect the transport properties of the QGP in
color space. In the classical model of the QGP, these color moment equations
form a BBGKY hierarchy of coupled equations because in this model the
color charges commute with each other. The hierarchy of color moment
equations can be truncated by hand by imposing some conditions. In the
semiclassical model, the hierarchy of color moment equations is truncated
automatically and cannot form a hierarchy of coupled equations.

The properties of the distribution function in spin space will be discussed
in Section 4.

3. TRANSPORT PROPERTIES OF THE QUARK IN COLOR AND
SPIN SPACE

In the quantum model of the QGP, a quark is described by a Wigner
function and its quantum transport equation [9]

pm DmŴ(x, p)

5 2
g
2

pm ­n
p #

1

0

ds [(e2sDFmn)Ŵ(x, p) 1 Ŵ(x, p)(esDFmn)]

1
ig
4

[smn(e2DFmn)Ŵ(x, p) 2 Ŵ(x, p)(eDFmn)smn]

1
ig
4

­n
p #

1

0

ds s[(e2sDFmn)DmŴ(x, p) 2 DmŴ(x, p)(esDFmn)]

2
i
8

g2 ­m
p ­n

p #
1

0

ds s #
1

0

ds̄ {(e2sDFmh)[(e2s̄DFh
n)Ŵ(x, p)

1 Ŵ(x, p)(es̄DFh
n)] 2 [(e2s̄DFh

n)Ŵ(x, p)

1 Ŵ(x, p)(es̄DFh
n)](esDFmh)} (17)

where the triangle operator is defined as D 5 (i/2) ­n
p Dn(x) and Smn 5

1–2 smn. The following products of operators are defined:
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ÔA ^ B 5 A ^ ÔB, A ^ BÔ 5 AÔ ^ B (18)

The quantum transport equation of the quark is very complex and can
yield much information. First we investigate the properties of the QGP in
color and spin spaces. For this we need the semiclassical limit equation of
Eq. (17), which is given by [6, 9]

pm DmW(x, p) 1
g
2

pm ­n
p{Fmn, W(x, p)} 2

ig
4

[smnFmn, W(x, p)]

2
g
8

{DnsabFab, ­n
pW(x, p)} 5 0 (19)

where we only retain the first-order derivative terms of the Wigner function for
the distribution function, which are supposed to vary slowly in nonequilibrium
statistical mechanics [10], and the collision terms are not written out.

In Eq. (19), the color charges are 3 3 3 matrices (Qa 5 2la/2) in color
space, and the spin tensors Smn are 4 3 4 matrices in spin space. The Wigner
function W(x, p) is a matrix in the space of the direct product of the color
and spin, which is a 3 3 3 matrix in the color space and a 4 3 4 matrix in
the spin space. W(x, p) is a function of x and p, and the color properties and
the spin properties are determined by the matrix forms of W (x, p) in color
space and in spin space.

In the color space, W(x, p) is a matrix of the fundamental representation
of the SU(3) group and can be reduced to the direct sum of a one-dimension
irreducible representation and an eight-dimenstion irreducible representa-
tion [11],

W(x, p) 5 W0
I
3

2 Wmla (20)

where W0 5 Tr(W(x, p)) and Wa 5 Tr(W(x, p)Qa) correspond to color singlet
and color octets of W(x, p); Tr denotes taking the trace in color space. Taking
the trace of Eq. (19), obtain

pm ­mW0 5
g
c

pmF a
mn ­n

pWa 2
ig
4

[sabF a
ab, Wa]

2
g
8

{(DnFab)asab, ­n
pWa (21)

where

(DnFab)a 5 ­nF a
ab 1 f abcAb

nF c
ab (22)

Timing Eq. (19) by Qa, then taking the trace in color space, have
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pm ­mWa 5 gpmF b
mn ­n

pWab 2 gfabc pmAb
mWc

2
ig
4

[sabF b
abTr(WQaQb) 2 Tr(WQbQa)F b

absab]

2
g
8

(DnFab)b[sab ­n
pTr(WQaQb) 1 ­n

p Tr(WQbQa)sab] (23)

where

Wab 5 Tr(W{Qa, Qb}/2) 5
dab

6
W0 2

1
2

dabcWc (24)

dabc is a symmetry construct of the SU(3) group.
In Eqs. (21) and (23), W0, Wa , and Tr(WQaQb) are matrices in spin space.

They are not commutative with smn. In the spin space, there are 16 independent
g matrices [6],

1, gm, ig5, gng5, smn

W0, Wa, . . . can be expanded in the 16 g matrices,

Wi 5
1
4

(Bi 1 ig5Pi 1 gmV i
m 1 gmg5Di

m 1 smnT i
mn) (25)

where Bi 5 tr(Wi), Pi 5 tr(2ig5Wi), V i
m 5 tr(gmWi), Di

m 5 tr(g5gmWi) 5
tr(Wig5gm), T i

mn 5 tr(Wi Smn) (i 5 0, a) are scalar, vector, pseudoscalar, pseu-
dovector, and tensor, respectively, and tr denotes taking the trace in spin space.
Decomposing Eq. (21) in spin space, we obtain a set of color singlet equations

pm ­mB0 5 gpmF a
mn ­n

pBa 2
g
2

(DnFab)a ­n
pTab

a (26)

pm ­mP0 5 gpmFmn ­n
pPa 2

g
2

(DnF̄a
ab ­n

pTab
a ) (27)

where F̄ab 5 1–2 eabmnFmn,

pm ­mVl
0 5 gpmF a

mn ­n
pVl

a 2 gV r
aF al

r 2
g
2

(DnF̄lr)a ­n
pDa

r (28)

pm ­mDl
0 5 gpmF a

mn ­n
pDl

a 2 gDr
aF al

r 2
g
2

(DnF̄lr)a ­n
pV a

r (29)

pm ­mTlr
0 5 gpmF a

mn ­n
pTlr

a 2
g
2

(DnFab)a ­n
pWab,lr

a

1 g(Fls
a T ar

s 2 F rs
a T al

s ) (30)

FIRST PAGE PROOFS



1324 Chen et al.

where

Wab,lr
a 5 tr(Wa{Sab, Slr}/2) 5 2

1
4

Paeablr 2
1
4

Ba(gargbl 2 galgbr)

(31)

Decomposing Eq. (23), we obtain another a set of color octet equations,

pm ­mBa 5 gpmF b
mn ­n

pBab 2
g
2

(DnFab)b ­n
pTab

ab

2 gfabc pmAb
mBc 2

g
2

fabcF b
mnTmn

c (32)

where

Bab 5 Trtr(W{Qa, Qb}/2) 5
dab

6
B0 2

1
2

dabcBc (33)

Tab
ab 5 Trtr(W{Qa, Qb}Sab /2) 5

dab

6
Tab

0 2
1
2

dabcTab
c (34)

pm ­mPa 5 gpmF b
mn ­n

pPab 2 gfabc pmAb
mPc

2
g
2

fabc F̄b
abTab

c 2
g
2

(DnF̄ab)b Tab
ab (35)

pm ­mVl
a 5 gpmF b

mn ­n
pVl

ab 2 gfabc pmAb
mVl

c 1 gFl
brV r

ab

1
g
2

fabc(F
rl
b )Dc

r 1
g
2

(DnFl
r)b ­n

pDr
ab

2
g
4

fabc(DnFlr)b ­n
pV c

r (36)

pm ­mDl
a 5 gpmF b

mn ­n
pDl

ab 2 gfabcpmAb
mDl

c 1
g
2

fabc(Frl
b )V c

r

1 gFl
brDr

ab 1
g
2

(DnFrl)b ­n
pV ab

r

1
g
4

fabc(DnF rl)b ­n
pDc

r (37)

pm ­mTlr
a 5 gpmF b

mn ­n
pTlr

ab 2
g
2

(DnFab)b ­n
pWab,lr

ab 2 gfabcpmAb
mTlr

c
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2
g
2

fabcF b
abWab,lr

c 1 g(Fl
bnT nr

ab 2 F r
bnT nl

ab)

2
g
4

fabc[(DnFl
s)b ­n

pTsr
c 2 (DnF r

s)b ­n
pTsl

c ] (38)

where

Wab,lr
ab 5 Trtr(W{Qa, Qb}{Sab, Slr}/4)

5 2
1
4

eablr1dab

6
P0 2

1
2

dabcPc2
2

1
4

(gargbl 2 galgbr)1dab

6
B0 2

dabc

2
Bc2 (39)

The 10 equations obtained above correspond respectively to the transport
equations of the color singlet spin scalar, the color singlet spin vector, and
so on. In the equations of the color octet Pa , Vl

a, Dl
a one has Pab, Vl

ab, Dl
ab,

which have relations similar to Eq. (33). For the spin variable, one has
Wab,lr

i (i 5 a, ab) in the equations of the spin tensor. Due to the constraint
of Clifford algebra in spin space, they are related to Pi and Bi [Eqs. (31),
(39)]. Inserting these relations into the relevant equations, we obtain two sets
of independent equations, one set of spin vector and one of spin pseudo-
vector equations.

The QED plasma is an Abelian plasma. The semiclassical limit equation
for the quark has been expanded in spin space in ref. 12. Under the condition
where the electromagnetic field is a constant field or varies slowly, there is
a simple relation between the vector distribution function and the scalar
distribution function,

Va 5 paB (40)

The QGP is a non-Abelian plasma. The case is complex. First, we
consider the color singlet, Eqs. (26) and (28). When a gluon field is a constant
field or varies slowly, we have

(DnFab)a 5 ­nF a
ab 1 f abcAb

nF c
ab 5 f abcAb

nF c
ab (41)

Equations (26) and (28) become

pm ­mB0 5 gpmF a
mn ­n

pBa 2
g
2

f abcAb
nF c

ab ­n
pTab

a (42)
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and

pm ­mVl
0 5 gpmF a

mn ­n
pVl

a 2 gV r
aF al

r 2
g
2

f abcAb
nFlr

c ­n
pDa

r (43)

There are no simple relations Vl
0 5 plB0 and Vl

a 5 nlBa in the above equa-
tions because of the last term, which comes from the non-Abelian property
of the gluon. The scalar and vector equations of the color octet have the
same results. This means that the QGP is more complex than the QED plasma
owing to the non-Abelian property of the gluon.

4. CONSISTENCY BETWEEN SEMICLASSICAL MODEL AND
QUANTUM MODEL

Section 2 gives a semiclassical model of the QGP with the aim of
making the model consistent with the quantum model of the QGP. In Section
3 we obtained 10 equations from the semiclassical limit equation. If the
semiclassical model is consistent with the quantum model, these equations
should be obtained from the semiclassical model. To take traces of the Wigner
function in color a spin spaces means to take the average in color and spin
spaces. In the semiclassical model, to take the average in color and spin spaces
is to do integrals in color space and spin spaces by the distribution function,

^b& 5 # bf dQ dS (44)

The integral in color space is defined in Section 2. Now we would like
to define the integral in spin space. In the semiclassical model, there are 6
independent components of Smn describing the spin of the quark. In the last
section, the properties of the Wigner function in spin space are expressed by
16 independent g matrices [13]. In order to make the semiclassical model
consistent with the quantum one, the spin space needs to be extended to 16
dimensions in the semiclassical model. Hence we introduce 16 orthonormal
basic vectors in spin space, Gi (G0 5 I, i 5 1, 2, . . . , 15), which satisfy the
Clifford algebra of g matrices and have the properties

(Gi)2 5 1 GiGi 5 2GiGi (i Þ j, i, jÞ 1) (45)

The orthonormal relations are defined by

# G0 dS 5 1, # Gi dS 5 0, # GiGi dS 5 dij (i, j Þ 1) (46)

The distribution function is expanded in spin space by
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f (x, p, Q, S) 5 f 0(x, p, Q)I 1 o
15

i51
f i(x, p, Q)Gi (47)

Using the orthonormal relations (46), we have f 0 5 * f dS, f i 5 * Gi f dS 5
* f Gi dS, and we can prove the following relations:

# GiGj f dS 5 # f GiGj dS 5 # Gjf Gi dS 5 f 0 dij 1 f k # GiGjGk dS (48)

As in color space, we define spin moments by

f i(x, p, Q) 5 # Gif dS 5 # f Gi dS (49)

From Eqs. (13)–(16), we can find the spin moment equations:

pm ­m f 0
0 5 gpmF a

mn ­n
p f 0

a 2
g
2

(DnFnb)a ­n
p f ab

a (50)

pm ­m flr
0 5 gpmF a

mn ­n
p f lr

a 2
g
2

(DnFab)a ­n
p f lr,ab

a

1 g(Fl
as f sr

a 2 F r
as f sl

a ) (51)

pm ­m f 0
a 5 gpmF b

mn ­n
p f 0

ab 2
g
2

(DnFab)b ­n
p f ab

ab

2 gfabcpmAb
m f 0

c 2
g
2

fabcF b
ab f ab

c (52)

pm ­m f lr
a 5 gpmF b

mn ­n
p f lr

ab 2
g
2

(DnFab)b ­n
p f ab,lr

ab

2 gfabcpmAb
m f lr

c 2
g
2

fabcF b
ab f ab,lr

c

1 g(Fl
bs f sr

ab 2 F r
bs f sl

ab ) 2
g
2

(DnFab)b ­n
p

3 # f
[Sab, Sab]

2
[Qa, Qb]

2
dQ dS (53)

where

f 0
0(x, p) 5 # f (x, p, Q, S) dQ dS, f 0

a(x, p) 5 # Qaf dQ dS

f mn
0 (x, p) 5 # Smnf dQ dS, f mn

a 5 # QaSmnf dQ dS (54)
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f 0
ab 5 # {Qa, Qb}

2
f dQ dS, f mn

ab 5 # {Qa, Qb}
2

Smnf dQ dS

Comparing Eqs. (50)–(53) with Eqs. (26), (30), (32), and (38) shows they
are the same and have the following correspondence relations:

f 0
0 → B0, f 0

a → Ba , f lr
0 → Tlr

0 , f lr
a → Tlr

a
(55)

f 0
ab → W 0

ab, f ab,lr
a → Wab,lr

a , . . .

Above we only give the scalar and tensor equations of the color singlet and
color octet. If we define spin moments of pseudoscalar, vector, and
pseudovector

f 0
p,i 5 # (2ig5f ) dQ dS, fmv,i 5 # gmf dQ dS

(56)

f m
D,i 5 # g5gmf dQ dS (i 5 0, a)

we also can obtain the equations of these spin moments and the equations,
are the same as those given in Section 3. Thus we see that the semiclassical
model is consistent with the quantum model of the QGP.

5. SUMMARY

We have given a semiclassical model of the QGP in which the classical
color charges are defined not to be commutative with each other and to
satisfy the Lie algebra of the SU(3) group. The orthonormal relations of the
color charge are defined. The distribution function can be expanded in the
color charges in color space. The spin of the quark is described by the
antisymmetric tensor Smn, spin space is extended to 16-dimensional space,
and 16 orthonormal basis vectors are introduced. The 16 basis vectors satisfy
Clliford algebra and the distribution function can be expanded in spin space
by these basis vectors. Using the classical transport equations, we find the
transport equations of the color singlet scalar, color singlet vector, and so
on, and these equations are the same as those obtained from the quantum
model of the QGP. The semiclassical model remains consistent with the
quantum model of the QGP.
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